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Efficient oxidation of alcohols electrochemically mediated
by azabicyclo-N-oxyls
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Abstract—Preparation of azabicyclo-N-oxyls and the electrochemical oxidation of alcohols using them as mediators have been
exploited. This oxidation was applicable to a transformation of sterically hindered secondary alcohols into the corresponding
ketones in high yields.
� 2007 Elsevier Ltd. All rights reserved.
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Figure 1. Structures of some N-oxyls.
The oxidation of primary or secondary alcohols to the
corresponding aldehydes or ketones is an important
transformation in organic synthesis. Recently, from
the environmental and atom-economical point of view,
a lot of catalytic methods using clean oxidants have been
exploited.1 A versatile organocatalyst 2,2,6,6-tetra-
methylpiperidine-N-oxyl (TEMPO) has been utilized in
chemical2 and electrochemical oxidation3 of alcohols
as a mediator. TEMPO is a stable but sterically hindered
radical because of the four methyl groups adjacent to
the nitroxyl group. Therefore, TEMPO is not suitable
for the oxidation of sterically hindered alcohols. In
2006, Iwabuchi and co-workers reported an excellent
oxidation of sterically hindered alcohols using
1-methyl-2-azaadamantane-N-oxyl (1-Me-AZADO),
which is one of the sterically less hindered class of
nitroxyl radicals (Fig. 1).4

Several azabicyclo-N-oxyls5 (Fig. 1) have been reported.
They exist as stable radicals because of Bredt’s rule.6

Although their physicochemical properties were exam-
ined, the possibility for them acting as mediators for
the oxidation of alcohols has hardly been known.7 We
wish to report herein an efficient electrochemical oxida-
tion of various alcohols mediated by azabicyclo-N-
oxyls. The azabicyclo skeletons were prepared according
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to the method reported by us as shown in Eq. 1.
Namely, the electrochemical oxidation of N-methoxy-
carbonyl-pyrrolidine (1) and -piperidine (2) afforded
dimethoxylated compounds 3 and 4,8 which were easily
transformed into azabicyclo compounds 5 and 6, respec-
tively, by TiCl4-catalyzed one-pot cyclization with allyl-
trimethylsilane. Finally, reductive dechlorination of 5
and 6 afforded 7 and 8, respectively.9

Preparation of 3-chloro-8-azabicyclo[3.2.1]octane-N-oxyl
(9) is shown in Eq. 2. That is, deprotection of 5 by
utilizing Me3SiI followed by Na2WO4-catalyzed
oxidation using urea hydrogen peroxide (UHP) afforded
a mixture of 9 and the corresponding hydroxylamine 10.
Also, a mixture of 8-azabicyclo[3.2.1]octane-N-oxyl
(11)5a and the corresponding hydroxylamine 1210 was
synthesized from 7. In a similar manner, 3-chloro-9-aza-
bicyclo[3.3.1]octane-N-oxyl (13)11,12 and 9-azabicyclo-
[3.3.1]octane-N-oxyl (14)5f without any generation of
the hydroxylamines were synthesized from 6 and 8,
respectively, Eq. 3.
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Cyclic voltammograms for a mixture of N-oxyl 9 and
hydroxylamine 10 (9 + 10) showed reversible wave pat-
tern similar to that for TEMPO. This strongly suggests
that azabicyclo-N-oxyls could play the role of an oxida-
tion mediator just like TEMPO (Fig. 2).13

The electrochemical oxidation of 1-phenyl-2-propanol
(15) using azabicyclo-N-oxyls as a mediator was carried
out under similar conditions used by Torii and co-work-
ers for TEMPO (Eq. 4).3c That is, the oxidation was
conducted using platinum electrodes in an undivided
beaker-type cell, containing a catalytic amount of
(9 + 10), sodium halides (NaX), and a mixture of
CH2Cl2 and satd aqueous NaHCO3 as solvent, at a con-
stant current (50 mA).14 The results are summarized in
Table 1. Oxidation of 15 did not proceed at all in the
absence of (9 + 10) (entry 1). In the presence of 0.1 equiv
of (9 + 10) together with NaBr, the oxidation of 15
CH2Cl2/sat. aq. NaHCO3, rt

 -[e], 3.0 F/mol, NaBr (4.0 equiv)
15

 
 

(11+12), 13, 14, 17 or TEMPO (0.1 equiv)
afforded 1-phenyl-2-propanone (16) quantitatively
(entry 2). Whereas using NaCl in place of NaBr did
not promote the oxidation (entry 3), use of NaI led to
poor yield compared to that of NaBr (28%, entry 4).
These results mean that Br� ion is the most suitable
halogen mediator for this electrochemical oxidation.
Using 0.02–0.01 equiv of (9 + 10) slightly reduced the
yield of 16 (93%, entries 5 and 6).

OH
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Other N-oxyls (11 + 12), 13, 14, and 175d,15 were also
good oxidation catalysts just like TEMPO (Eq. 5).
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Figure 2. Cyclic voltammograms for 9 + 10 and TEMPO.

Table 1. Electrochemical oxidation of 1-phenyl-2-propanol (15)

Entry Equiv of (9 + 10) Sodium halide Yield of 16 (%)

1 0 NaBr 0
2 0.1 NaBr 99
3 0.1 NaCl 0
4 0.1 NaI 28
5 0.02 NaBr 93
6 0.01 NaBr 93
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Moreover, isolated N-hydroxylamine 10 catalyzed the
electrochemical oxidation of 15 as efficiently as N-oxyl
(9 + 10) (Eq. 6).
Table 2. Electrochemical oxidation of various alcohols 18–22

Entry Alcohol Product

(9 + 10)

1 18
OH

23 O

H
99

2 19
OH

24 O

H

77

3 20

OH

25

O

99

4 21

OH

26

O

99

5 22

OH
27

O
98
CH2Cl2/sat. aq. NaHCO3, rt

-[e], 3.0 F/mol, NaBr (4.0 equiv)
15 16

93% yield
N-hydroxylamine 10 (0.1 equiv) ð6Þ
Table 2 shows the electrochemical oxidation of various
primary and secondary alcohols 18–22 using azabi-
cyclo-N-oxyls (9 + 10), (11 + 12), 13, 14, 17, and
TEMPO as mediators (Eq. 7). All N-oxyls had excellent
catalytic activity just like TEMPO toward primary
alcohols 18 and 19 (entries 1 and 2), and secondary
alcohols 20–22 (entries 3–5) to afford the corresponding
carbonyl compounds 23–27 in high yield, respectively.
Yield of product (%)

(11 + 12) 13 14 17 TEMPO

96 99 90 82 99

90 91 99 99 68

99 99 99 99 72

97 86 90 99 77

99 99 99 99 84



Aldehydes or ketonesAlcohols
18-22 23-27CH2Cl2/sat. aq. NaHCO3, rt

-[e], 3.0 F/mol, NaBr (4.0 equiv)
(9+10), (11+12), 13, 14, 17, or TEMPO (0.1 equiv) ð7Þ

Table 3. Electrochemical oxidation of sterically hindered alcohols 28–31

Entry Alcohol Product Yield of product (%)

(9 + 10) (11 + 12) 13 14 17 TEMPO

1 28

OH
32

O
87 65 90 86 82 61

2 29
OH

33
O

99 86 92 82 76 23

3 30

OH

5
34

O

5
85 74 94 99 99 41

4 31
Ph COOMe

OH
35

Ph COOMe

O
72 75 97 99 74 56
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Table 3 summarizes the electrochemical oxidation of
sterically hindered secondary alcohols 28–31 (Eq. 8). In
the case of TEMPO, the oxidized products 32–35 were
obtained in low to moderate yield (23–61%), while
N-oxyls (9 + 10), (11 + 12), 13, 14, and 17 played a
better role than TEMPO (entries 1–4). These results
prove that azabicylo-N-oxyls are efficient mediators for
the oxidation of sterically hindered alcohols because
they are less hindered than TEMPO.

28-31 32-35
KetonesAlcohols

CH2Cl2/sat. aq. NaHCO3, rt

-[e], 3.0 F/mol, NaBr (4.0 equiv)
(9+10), (11+12), 13, 14, 17, or TEMPO (0.1 equiv)
ð8Þ
Azabicyclo-N-oxyls (9 + 10), (11 + 12), 13, 14, and 17
were also effective in the chemical oxidation (Eq. 9).17–19

That is, l-menthol (29) was almost quantitatively oxi-
dized by using these N-oxyls, while in the case of TEM-
PO the yield of l-menthone (33) was only 22%.
CH2Cl2 / H2O,  rt, 24 h

NaIO4 (1.2 equiv), N
(9+10), (11+12), 13, 14, 17,

OH

29
In summary, azabicyclo-N-oxyls (9 + 10), (11 + 12),
13, 14, and 17 were applicable to electrochemical
oxidation of various alcohols as mediators. Especially
in the oxidation of sterically hindered secondary alco-
hols to the corresponding ketones, these N-oxyls were
much more effective than TEMPO. Preparation of chi-
ral azabicyclo-N-oxyls and enantiospecific oxidation of
secondary alcohols using them as mediators are now
underway.
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